

EL MADIDI saïd¹, EL BERKAOUI Abdessamad¹, BEN ELMAALEM Omar¹ and BOUJGHAGH Mohamed²

Equipe de variabilité genétique, Faculty of Sciences Agadir
 Regional center Souss Sahara INRA

OBJECTIVE

The evaluation of the variability and the estimate of the genetic parameters of the agro morphological characters at 30 genotypes of cactus pear.

× Introduction

× Materials and methods.

× Results

× I. Analysis of phenotypic variation.× II. Heritability and genotypic gain

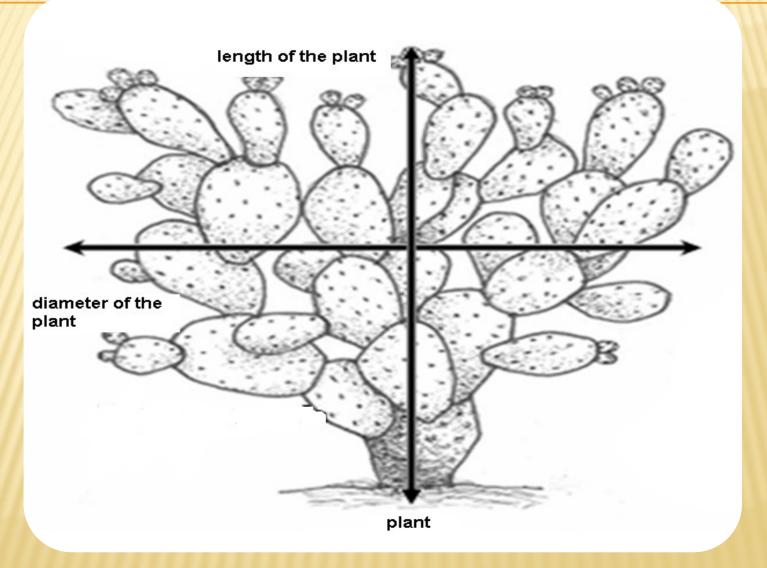
× conclusion

INTRODUCTION

Cactus pear has a very high economic importance in Morocco.

The evaluation of variability and estimation of genetic parameters of agro morphological characters.

For select


Genotype suitable for:

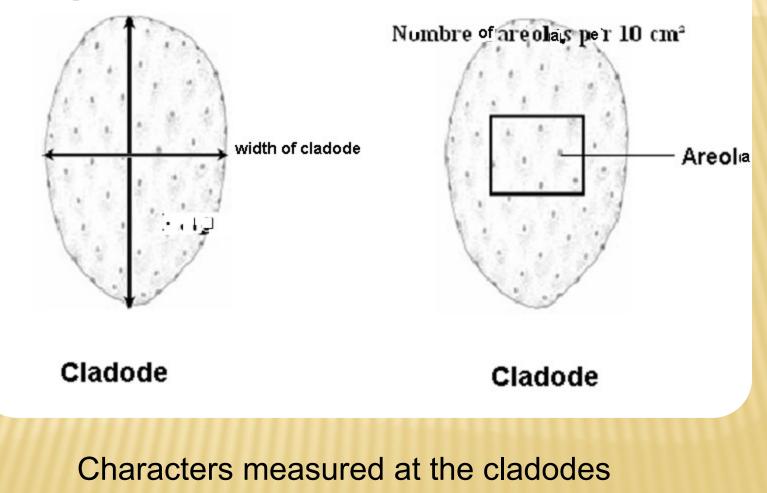
Forage & food production,
Produce fruit and seeds
Fight against erosion,

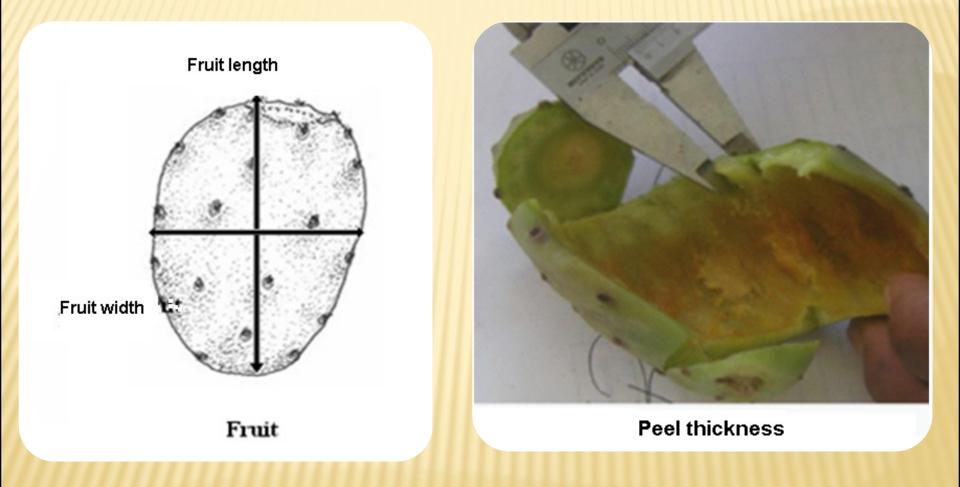
hence the need

- The material of this study comprised 30 genotypes of cactus pear
- Collected by Mr Boujghagh in different localities and planted in the experiment farm Melk Azhar of INRA in 2005.

- The experimental design is a randomised complete block with two replications.
- 24 agro-morphological characters were measured during two years (2008 and 2009)

Characters measured at the plant




Newly formed cladodes of cactus

Fruits of cactus

Characters measured at the plant

Length of cladodes

Characters measured at the fruits

Seed of cactus

Characters measured at the fruits

Genotype 161

Genotype 163

Genotype 164

Genotype 165

Genotype 166

Genotype 169

- Data were collected from each plant with five replicates per plant and year
- Statistical analysis: mean, minimum, maximum, standard deviation, coefficient of phenotypic variation and analysis of variance were performed using the software Statistica

× The coefficient of phenotypic variation :

$$CV_P = \frac{\hat{\sigma}_P}{m} \times 100$$

× Broad sens heritability : $\hat{H}_{BS}^2 = \frac{\hat{\sigma}_{G}^2}{\hat{\sigma}_{S}^2}$

× Based in partitioning the $\hat{\sigma}_P^2$ in $\hat{\sigma}_G^2$ and $\hat{\sigma}_E^2$ (between and within genotypes variances)

If we select the best genotypes the expected pecentage relative of genotypic gain:

× Genotypic gain (ΔG):

 $\Delta G = \mathbf{i}\hat{H}^2\hat{\sigma}_P$

× Relative genotypic gain (ΔG_r) : $\Delta G_r = \frac{\Delta G}{m} \ge 100$

i : standardized selection differential = 1 (p = 0.38)

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CV _P (%)
2008	22	73	126	21.78	35.64
2009	15	78	230	37.17	47.71

TABLE 1: NC / Plant: number of cladodes per plant

	Min	Mean	Max	SD	
2008	0	19	69	17.23	89.27
2009	0	8	25	7.28	91.60

TABLE 2: NNC / Plant: number of newly formed cladodes per plant

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CV _P (%)
2008	1	108	345	82.91	76.25
2009	0	42	290	55.10	130.81

TABLE 3: NF / Plant: number of fruit per plant

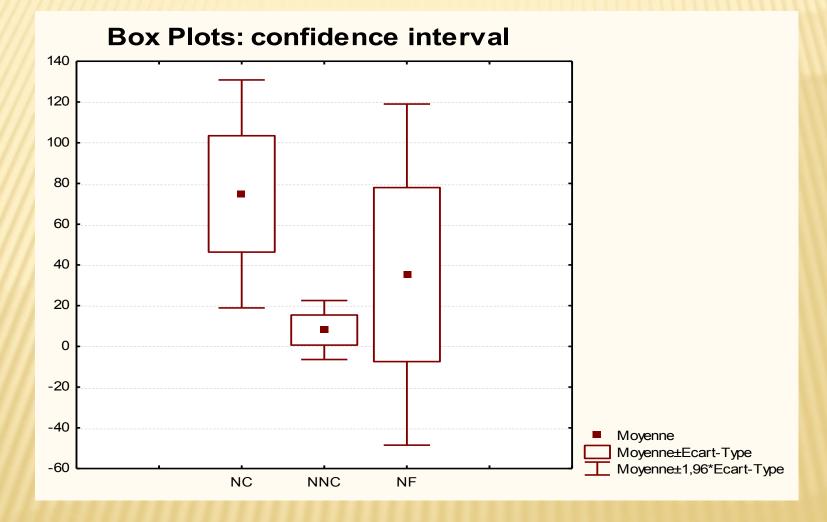


Figure 1: NC: Number of Cladodes, NNC: Number of Newly Cladodes NF: Number of Fruits

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CV _P (%)
2008	19.5	37.86	53	4.89	12.89
2009	14	37.15	51	5.65	15.23

TABLE 4 : LC: Length of cladodes (cm)

	Min	Mean	Max	SD	CV _P (%)
2008	11	23.51	45	5.26	22.38
2009	10.5	25.84	41	6.49	25.14

<u>TABLE 5</u> TC: Thickness of cladodes (mm)

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CV _P (%)
2008	16.08	106.87	220.13	34.77	32.53
2009	13.6	98.05	137.88	32.54	33.19

TABLE 6 FW: Fruit Weight (g)

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CV _P (%)
2008	3	7.38	11	1.21	16.47
2009	2.5	7.51	11.14	1.51	20.11

TABLE 7 : FL: Fruit length (cm)

	Min	Mean	Max	SD	CV _P (%)
2008	2.8	5.02	7.20	0.67	13.31
2009	2.7	4.93	6.6	0.68	13.79

TABLE 8: FWd: Fruit width (cm)

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CVP (%)
2008	10	47	90	13	27.3
2009	1.3	6.7	11.5	17	25.3

TABLE 9: PT: Peel thickness (mm)

	Min	Mean	Max	SD	CVP (%)
2008	11.02	52.70	110.6	17	32.26
2009	8.42	55.98	95.23	17.54	31.30

TABLE 10 PW: Peel weight (g)

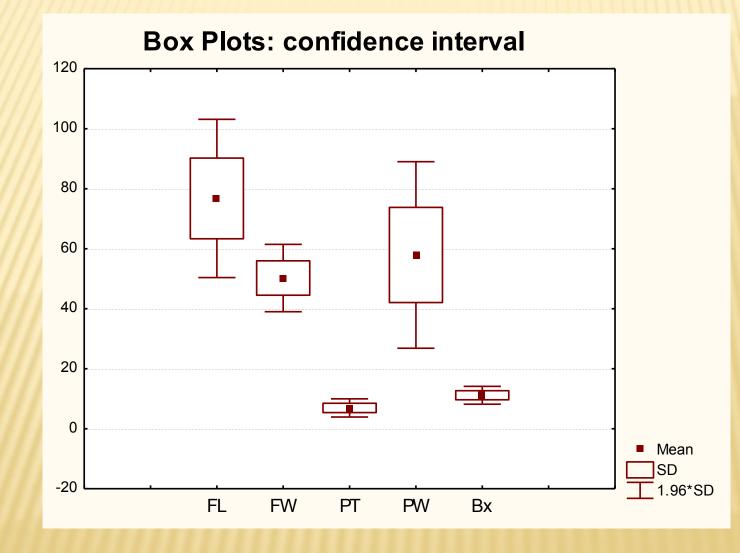


Figure 2: FL: Fruit Lenght, FW: Fruit Width, PT: Peel Thickness, PW: Peel Weight

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CV _P (%)
2008	0.22	3.76	7.77	1.49	39.50
2009	0.34	3.44	6.22	1.22	35.42

TABLE 11 : SW: Seed weight (g)

	Min	Mean	Max	SD	CV _P (%)
2008	21	274	496	96.60	35.21
2009	68	268	407	79.24	29.52

TABLE 12: NS: Number of Seed

I. Analysis of phenotypic variation:

	Min	Mean	Max	SD	CV _P (%)
2008	6	11.60	15	1.55	13.36
2009	7	11.17	15	1.54	13.79

TABLE 13: Brix : Sugar content

NC / Plant	2008	2009	Mean
H ²	0.19	0.35	
ΔG_{γ} (%)	6.86	13.48	10.17

NNC / Plant	2008	2009	Mean
H ²	0.20	0.09	
ΔG_{r} (%)	15.78	8.30	12.04

NF / Plant	2008	2009	Mean
H ²	0.33	0.24	
ΔG_r (%)	24.14	29.15	26.64

Fruit Weight	2008	2009	Mean
H ²	0.20	0.42	
$\Delta G_r (\%)$	5.30	13.78	9.54

Fruit width	2008	2009	Mean
H ²	0.24	0.31	
ΔG_r (%)	1.78	4.25	3.01

Seed weight	2008	2009	Mean
H ²	0.56	0.45	
ΔG_{r} (%)	21.82	15.71	18.76

Seed Number	2008	2009	Mean
H ²	0.46	0.38	
ΔG_{r} (%)	13.07	10.95	12.01

Brix	2008	2009	Mean
H ²	0.38	0.18	
ΔG_r (%)	3.87	2.49	3.18

- For some characters, there is a large phenotypic and genotypic variability within and among the genotypes analysed.
- The results show differences in the amount of variability between characters and years

CONCLUSION

High to moderate CV_P (coefficient of phenotypic variation) are observed for :

- + NF/plant : number of fruit per plant
- + NNC / plant : number of newly formed cladodes per plant
- + NC / plant : number of cladodes per plant
- + FW : Fruit width
- + SW: Seed weight
- + NS : Number of seed

CONCLUSION

Low values of CV_P (coefficient of phenotypic variation) are observed for :

- + Brix : Sugar content.
- + LC : Length of cladodes.
- +TC : Thickness of cladodes.

The lowest values of the relative genotypic gain(ΔG_r):

+LC : Length of cladodes.
+TC : Thickness of cladodes
+Fw : Fruit width
+Brix : Sugar content.

The larger values of the relative genotypic gain (ΔG_r) : + NF / plant : Number of fruit per plant. + SW: Seed weight. + NS: Number of seed. There is a need:

- To screen a large number of genotypes to identify genotypes with a high yield per plant for fruits, cladodes and seeds production for use in breeding programmes aimed at developing high yielding varieties.
- * To estimate genetic parameters for productive traits: heritability, genetic correlations and genotype x environment interaction.

attention